Bringing ideas

An expedition through the jungle

Delivering large scale commercial Passive House buildings Down Under – lessons learned.

Gringing ideas

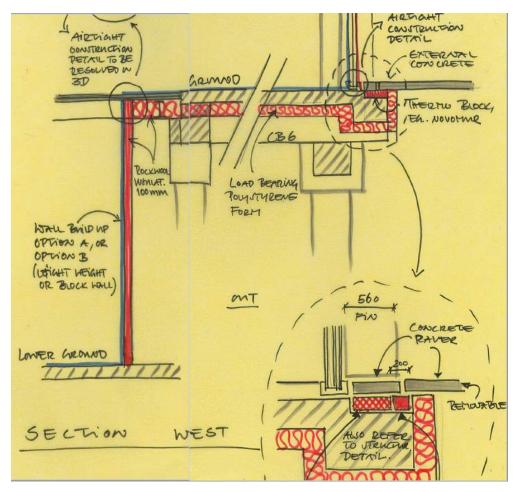
An expedition through the jungle

Delivering large scale commercial Passive House buildings Down Under – lessons learned.

aurecon

Bringing ideas

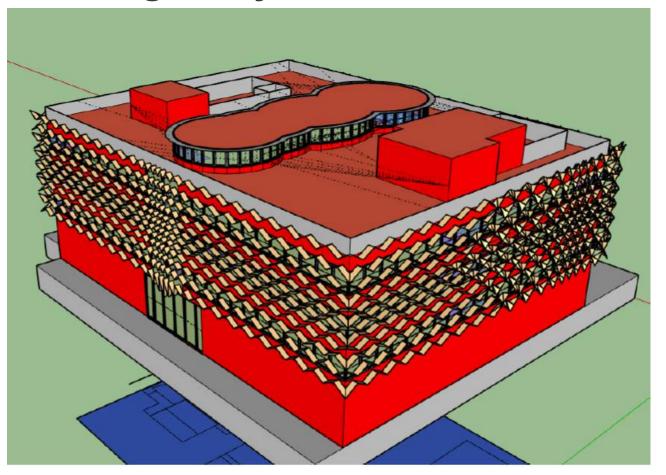
Thermal Bridging



 In Melbourne (warm climate) the impact of Thermal Bridging for large buildings is not as significant as initially anticipated.

5

Structural Details



- On the primary structure avoiding thermal bridging can be very costly and complicated.
- Challenging to estimate impact without detailed modelling
- Pick your battles wisely

Bringing idea. to life

Shading Analysis

- PHPP has its limits for complex geometries
- Alternative tools must be used and results imported into PHPP

Combustibility of Airtightness Membrane

 Due to combustibility issue, airtightness membranes can be excluded from construction (depending on FER). Alternative solutions include wet plaster, airtight paints, corking/taping of joints of airtight panels.

Combustibility of Insulation

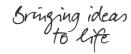
 Combustible insulation is typically excluded from the external building envelope.
Sourcing non-combustible insulation for external applications remains a challenge.

Non-Technical Findings

يععق

.

· · · ·


Ø

Ö

Bringing ideas

 \ge

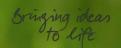
Project Team

- Procurement
- KPIs and personal agenda
- Accountability
- Project Target

Bringing idea. to life

Cost Planning

- Is there a separate 'sustainability' budget? What is included?
- Who evaluates trade offs and synergies?
- Who evaluates long term cost savings?
- How to value comfort, reputation, research opportunities, …?



Expensive Fixes

Monash Technology and Education Building: Wext Façade Glazing Options Assessment (23/11/17)									
Methodology	Simplified analysis to quantify peak envelope loads; Does not include consideration fo natural vencilution, thermal mass or ventilation strategy of double thin facuate								
Façade Type	Buffer	Extract Air	Single Facade, Box Window Corridor	Twin Façade	Perforated Mashrabylya Screen	Exterior Lowres	Conventional	Intersticial Blinds, Window Wall	Conventional, Punched Windows
Operable Windows	No	No	No	Yers	No	No	Yes	Na	Yes
	687	1 58		1 1 8	(₀)	(8)	(6)	(8)	(_p)
Description	6-12-8 low-e glazing, frame 5.66W/m2*k	6-12-8 low-e glazing, frame 5/68W/m2*k	6-12-8 low-e plazing, frame 5.68W/m2*k	6-12-8 low-e glazing, frame 5.68W/m2*k	6-12-3 low-e glazing, frame 5-681//m2*k	6-12-8 low-e glazing, frame 5.68W/m2* Louvres 16mm width	k 6-12-8 low-e glazing, frame 5.68W/m2*k Blind 25% Permeability	6-12-8 low-e glazing, frame 5.68W/m2*k Louvres 16mm width	6-12-8 low-e glacing, frame 5-68W/m2*8 No-4-3551 Research frame
Pro's and Con's	PIOL: chimney effect, good ventilation, good incuitation (good for all seasons), good actas reduction, high comfan, optical walkways, good nitural lighting with potentisity reflective archaes. COM: could facades are typically more expensive than single facades.	OVERALL: less convenon, less proven effectiveness	CVERALL: less common, hysically cost > performance	ONERALL: share some pro's with buffer fagade but lose chimney effect	OVERALL: functional improvement from convintional, opportunity for green wal		PROIs effective for glack CONE ineffective for thermal comfort	PBO: excellent is cold weather; CCM: high cost	Output: mus distinction for thermal
Results	Cooling Loads	Cooling Loads	Cooling Loads	Cooling Loads	Cooling Loads	Cooling Loads	Cooling Loads	Cooling Loads	Cooling Loads
Conduction	18.25	18.25	35.25	18.26	23.58	2057	21.12	18.92	1.597
Solar Load	50			10000 (MA)	130	40	130	50	16.33
# Occupanty	120	120	100	To and	120	520		121	120.5
= Equipment				120	1.44	10	110		- 0
11112	1.5	1.5	1.5	1.5).	0	15	<u>8</u> :	1 5	1 5.00
* Lighting) 3 -0 10 100 150) 3 0 10 100 150	0 50 100 150	1 X 0 50 300 150	0 50 500 550	8 58 100 150	3	1 J 0 50 100 150	0 50 300 150
Closed Condition		-				and this same const		- 1.1.0 YO 2.1.0. 1999	
Systems U-Value System SHOC	1.66	1.66	1.65	1.66	1.78	1.87	1.92	3.72	2.1
Visible Transmittance	0	0	0	4	0.04	0	6	0	0
Open Condition									
Systems U-Value	1.76	1.76	176	1.76	1.92	1.94	2.06	18	22
System SHGC Visible Transmittance	0.41	0.41	0.30	0.81	0.26	0.4	0.36	0.39	0.55
in La sur sur sur sur sur sur sur sur			-						
Window to Wall Ratio	BON.	86%	non	86%	30%	admi.	86%	10%	60%
Assumptions Glasing Height (m)	3	3	3	3	3	3	1	3	0.74
Glazing Width (m) Window Area (m2)	1.1	11	11	11		11	13	3.3	3,3
Wiedow Area (m2)	9.9	9.9	5.9	9.9	9.9	9.9	99	9.9	2,4
Room Width (m)	3	3	3	3	3	3	3	3	3
Room Depth (m) Room Area (m2)	3.3	3.3	3.3	33	3.3	3.3	3.3	3.3	3.3
Lighting Power Dansity (W/m2)	3	3	3	3	10	3	10	3	3
Equipment Power Density (W/m2)		3	ŝ	3	1	3	3	3	5
Occupant Dansity (m2/aerson)	10	10	10	10	10	10	10	10	10
Met Rate (W/person)	120	120	120	120	120	120	120	120	120
Heat Through Window Solar Gais (W/m2)	1000	1/00	1000	1000	1000	2000	1000	1000	1000
Ambient Temperature IC	35	35	35	35	1000	35	35	35	35
internal Temperature (C)	24	24	24	24	25	24	24	24	24
Solar Gais (W)	\$91	821	191	871	1287	196	1792	801	154.7
Solar Load (W/m?)	90	90	90	50	130	40	180	90	86.33
	181	181	181	181		204	-		-
Conduction (W)					190		209	187	59

 Anything is possible ... but it typically comes with a price tag and an increased risk in not meeting PH benchmarks.

Strategic Plan

9

Getting ready for the next expedition

 Project team responsibilities and qualifications

- Allow for training/education
- How to evaluate cost?
- Understand project added values
- High level design strategy and PHPP stress test Agree on risk strategy (safety margin)

- Understand availability of materials/products early, consider lead times and cost premiums
- Validate availability/constructability of thermal performance – e.g curtain walls
- D&C contract clarity on performance specifications vs. architectural drawings

Johanna.Trickett@Aurecongroup.com

Follow us on www.twitter.com/Aurecon

9

f

0

in

...

Join us on www.facebook.com/Aurecon

Watch us on www.youtube.com/user/AureconGroup

Follow us on www.instagram.com/Aurecon

Follow us on www.slideshare.net/Aurecon